

RQ-30 non-contact discharge system

Technical Information

- »Conventional discharge measurement
- »Features RQ-30
- »Measurement principle RQ-30
- »Calibration RQ Commander
- »Advantages RQ-30
- »Range of application
- »Set-up of measurement site
- »Compare RQ-30 to other systems

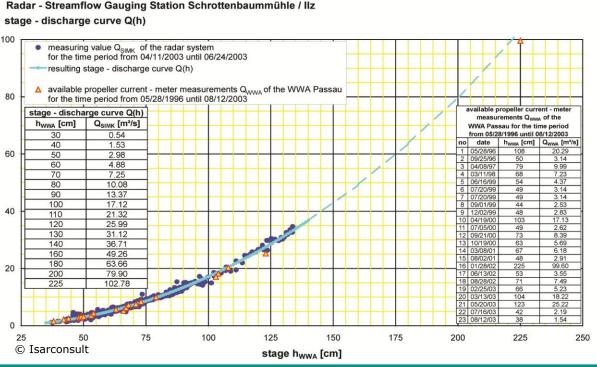
Conventional discharge measurement

Conventional discharge measurement

Limits of conventional discharge measurement

Floodwater

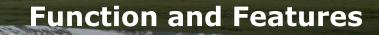
- » Manual measurement (current meter, ADCP boat, ...) not possible
- » Damage of instrumentation by bed load, trees,...
- Danger for employees during manual measurement
- » Availability of employees during the flood for measurement jobs
- » Low data base for accurate determination of discharge – extrapolation of stage-discharge curve Q(h)



How is conventional discharge measurement done?

- » Manual measurement of flow velocity by e.g. current meter or ADCP boat over a long. time period
 - \rightarrow Chart: \triangle (yellow triangle)
 - Time period: 7 years
 - Only a few measurement points to create discharge curve
- » Generate discharge correlation-curve Q(h)

Method RQ-30


- Continuous measurement of flow velocity
 - » Chart: (blue circle)
 - » Time period: 2 month
 - lischarge Q_{SIMK} [m³/s] Many measurement points also at high discharge (floodwater)
- Determination of discharge without discharge curve Q(h)
- » Better Quantifying of discharge
 - Relation "discharge / level"
 - Relation "flow velocity / level"
- Discharge curve guicker available

Features RQ-30

Functions

» Calculation of discharge

» Continuous measurement of flow velocity and level

» Discharge value immediately available after installation

» Stage-discharge curve (Q/h) not required

» Non-contact measurement

- » Failsafe and reliable
- Maintenance-free
- » Safe from flood damaging
- » Easy assembling outside/above the river at bridge or arm

» Easy integration into existing systems

Features based on the measuring data

» Recognize dynamic processes such as riverbed changing, backwater, vegetal invasion and hysteresis

- » Online stage-discharge curve Q(h) to evaluate discharge
- » Correlation "level /flow velocity" to evaluate discharge

Applications

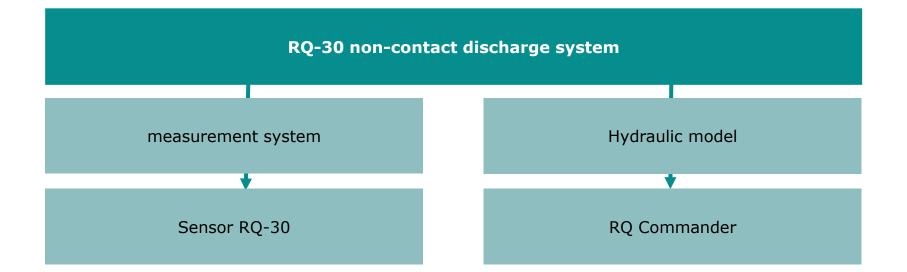
Range of applications

» Rivers, mountain, torrents

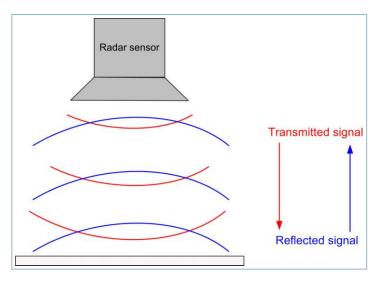
- » Hydrographic services
- » Civil service
- » Hydro power plants

» Open channels, canal, drains

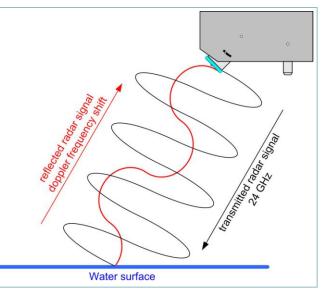
- » Hydro power plants
- » Waste water
- > Industry
- » Irrigation
- » Water management



Measurement principle RQ-30

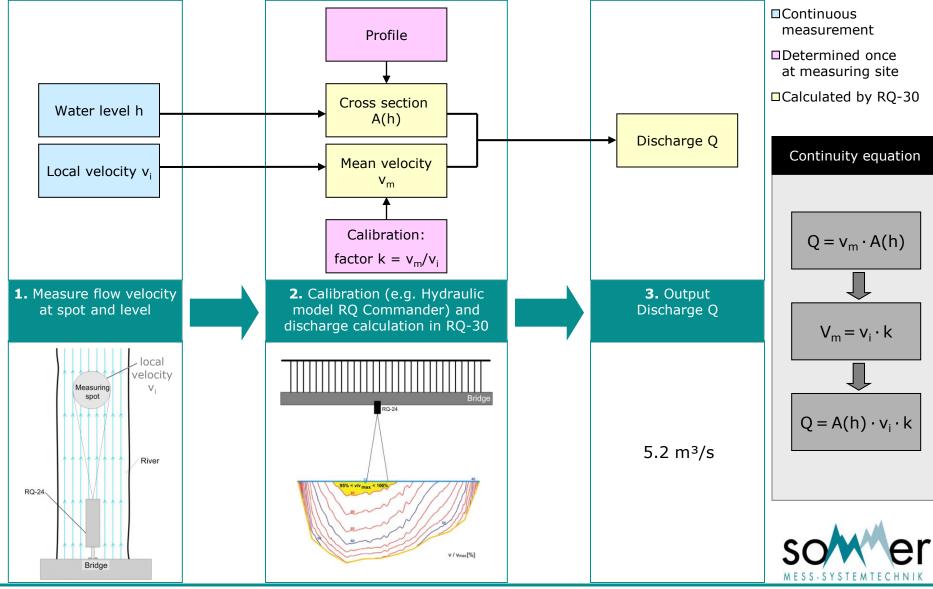


Measurement principle RQ-30

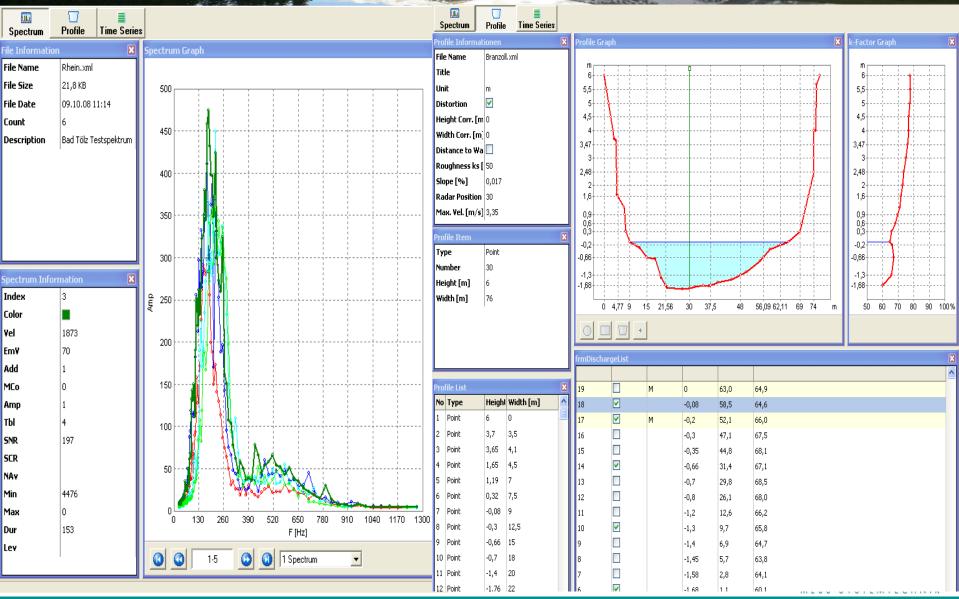


Water level (stage)

- » Non-contact
- » duration measurement of radar signal
- >> High accuracy
- » Measurement independent from air temperature and medium



Flow velocity


- » Non-contact
- » Measurement of doppler frequency shift
- » 24 GHz min. detection of 3mm waves
- » High accuracy: velocity > 30cm/s
- » Measurement independent from air temperature and medium

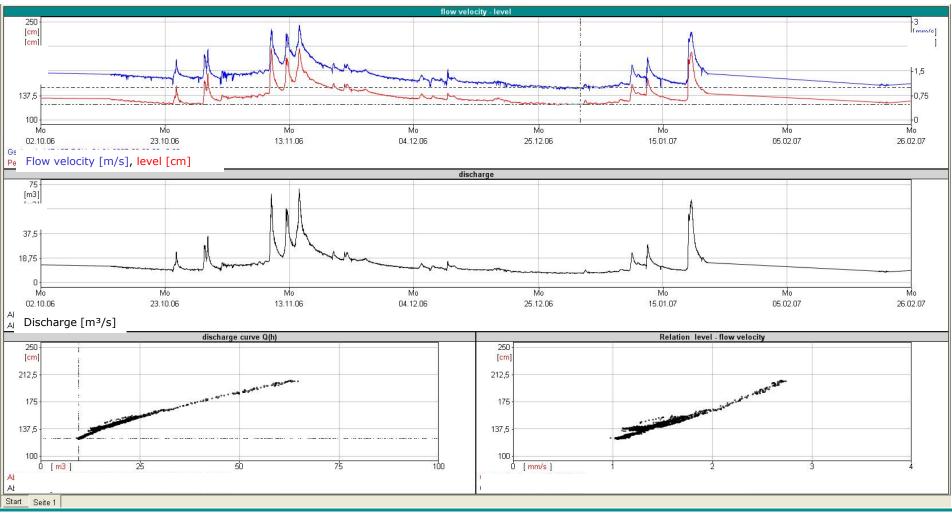
Measurement principle RQ-30

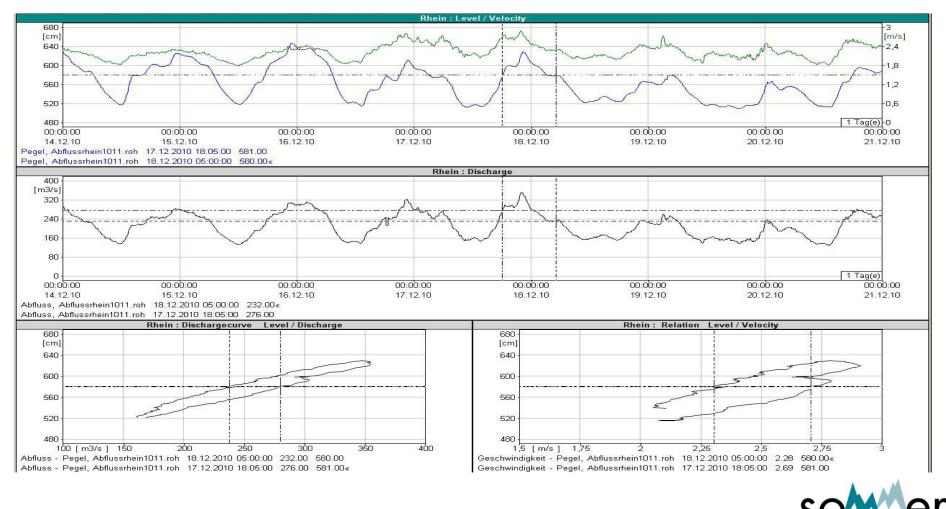
RQ Commander

Advantages RQ-30

Non-contact measurement

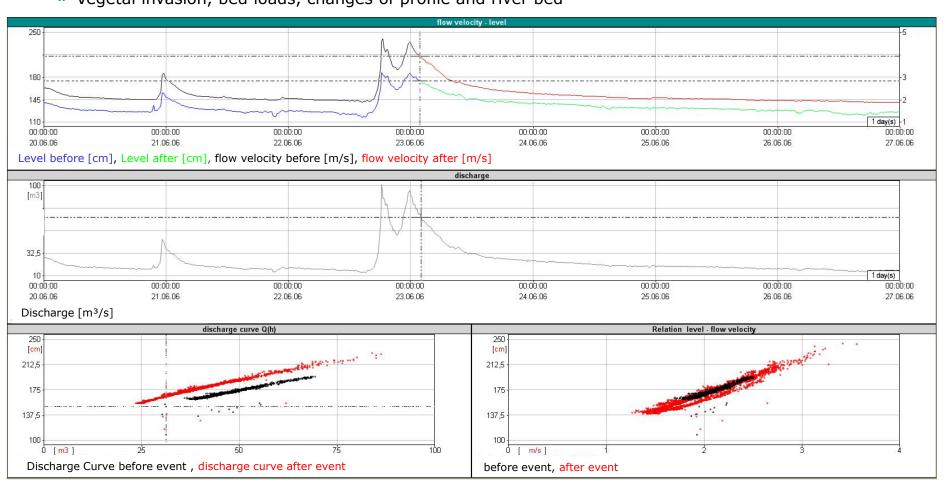
Installation outside/above the river


- » High reliability / failure safety at floods
- » Maintenance free (No cleaning of Sensors necessary)
- » No damage of sensor by flotsam, trees, debris, bed load,...


Continuous measurement of water level and flow velocity

» Control of quality of measurement and measuring site through generating the discharge curve

Recognition of flow hysteresis



MESS-SYSTEMTECHNI

Recognition of dynamic processes: At the same level change of flow velocity

The cross surface sections change, but not the hydraulic model (k – dimensionless factor)!
Vegetal invasion, bed loads, changes of profile and river bed

Advantages RQ-30

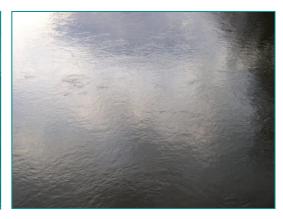
Easy and economic installation

»No installation underwater
»No construction at river necessary
»Installation all-the-year possible
»Mounting height from 0.5 to 35m
»Independent from flow direction
»Mobile and fixed installation
»Mounting at bridge without drilling
»Safe of vandalism

Range of application

Structure of water surface

- » Minimum detectable wave height: 3 mm
- » Measuring spot contain no rocks, falls or gullies



Floodwater:

- high waves
- perfect measuring

Flat water surface: – low waves – perfect measuring

Very flat water surface:

- very low waves
- difficult measuring

Limits of RQ-30

»Flow velocity < 0,3m/s and > 15m/s

Distance sensor – water surface < 0,5m and > 35m

» Broad and slow rivers with behavior like a lake

- »Detectable wave height > 3mm
- » At measurement spot flow velocity: NO stones, swirls, standing waves
- » Measurement time between 10 to 240 sec (recommended 30 sec)

Disturbance of wave pattern at water surface

RQ-30, General training data and information, 2011, V001, © Sommer GmbH & Co. KG, Exclusion: Subject to deliverability, technical changes and errors excepted.

Technical specification

Technical specification

General data

Dimesions (mm):	Appr. 200 x 190 x 130 mm	
Protection:	IP 68	
Power supply:	5.5 V 30 V	
Power consumption:	Sleep modus 1mA	
	Active appr. 130 mA (measurement 10 60 sec)	
Operating temperature:	-35° to 60° C	
Storage temperature:	-40° to 60° C	
Lightning protection:	Integrated lightning protection with discharge capacity 0.6 kW Ppp	

Connector 1 (12 pin)

•	• 7	
Interface:	1x RS 485	
	1x SDI - 12	
	Transmission rate (1.2. KBaud to 115 KBaud)	
Analog Output:	Water level	
	Velocity	
	Discharge	
	Ext Input (AUX sensor)	
Digital Output:	1x Switching output (max. 1.5 A)	somer
Digital Input:	1x Trigger input (0=0 - 0.6V) (1=2 - 30V)	MESS-SYSTEMTECHNIK

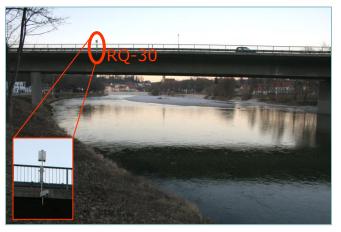
Level Measurement

Depth measurement:	0 to 15 m standard operation range
	0 to 35 m optional extended operating range
Resolution:	1 mm
Accuracy:	+/- 5 mm; +/- 0.025 % FS (15 m)
Measurement frequency:	K-Band (26 GHz)

Velocity Measurement

Range:	0.3 to 15 m/s
Accuracy:	+/- 0.02 ms; +/- 0.5 %
Resolution:	1 mm/ s
Direction recognition:	+/-
Measurement duration:	10 to 240 sec
Measurement period:	Min 2 sec (active 10 60 sec)
Frequency of sampling:	2 khz
Measurement interval:	Min 5 sec max 5 h
Distance to water surface:	Min 0.5 m max 15 m/ 35 m

Comparison RQ-30 to other systems

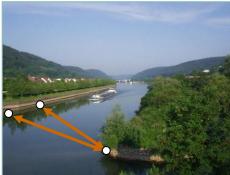


Water Gauge Station

- Parameter
 - » Continuous water level
 - » Manual flow velocity
- » Stage discharge curve Q(h) required
 - » Time and cost intensive measurement campaign
 - » Less measurement data at flood situation
 - » Extrapolation of Q(h) curve at high discharge
 - » Measuring during flood at high risk
- Damage at flood
 - » Bed load / trees / flotsam
- » No direct detection of riverbed changing
- » Expensive setup of measurement site
 - » Structural measures in the river
 - Assembly costs

RQ-30

- » Parameter
 - » Continuous water level
 - Continuous flow velocity
- » Discharge correlation-curve Q(h) NOT necessary
 - » Calibration by hydraulic model
 - » Discharge immediately available after installation
- » Reliable even during floods
 - » Non-contact fail-safe low maintenance
 - » Sensor above / outside the river
- Detection of dynamic processes (riverbed changes, vegetal invasion, hysteresis, ...)
- » Economic and simple assembling
 - » No structural measures in the river



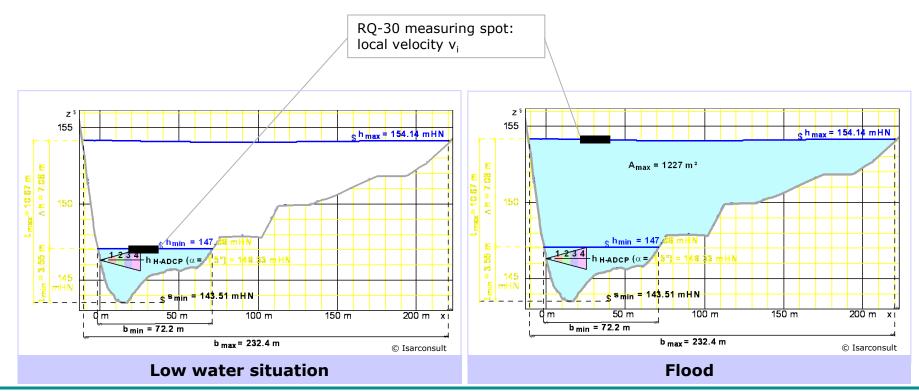
Comparison RQ-30

Ultrasonic - transit time

- » Contact measurement
 - » Flood: troubles with bed load
 - » Damage of measurement system (trees, ...)
 - » Sediments and airbubbles
- >> Flow velocity
 - Down to 0 m/s
 - » Flood: measurement close to river bed
- » Minimum water depth
- » Expensive setup
 - » Underwater installation
 - » Construction in the river
 - » Installation of several operating time analysis
 - » Maintenance-intensive
- > Limits
 - » Bed load, suspended load, turbidity
 - » Minimum water depth
 - >> High velocity

RQ-30 – radar system

- » Non-contact measurement
 - » Reliable measurement even during flood
 - » Setup above of river no damage
 - » Maintenance-free
- >> Flow velocity
 - >0.30 m/s and <15 m/s depending on the river characteristics</p>
 - » Flood: Always measurement of v_{max} at surface
- » No minimum water depth
- Simple setup
 - » Easy and cost-saving mounting
 - » Setup above river No construction in the river
- Limits
 - » Very slow flow velocity
 - » Calm water surface



Flood – compared to H-ADCP / transit time

» RQ-30 measures always the maximum flow velocity at every water level (stage)

- » The maximal flow velocity produces the highest discharge quantity
- » Transformation from maximum to mean velocity is more accurate

Set-up of measurement site

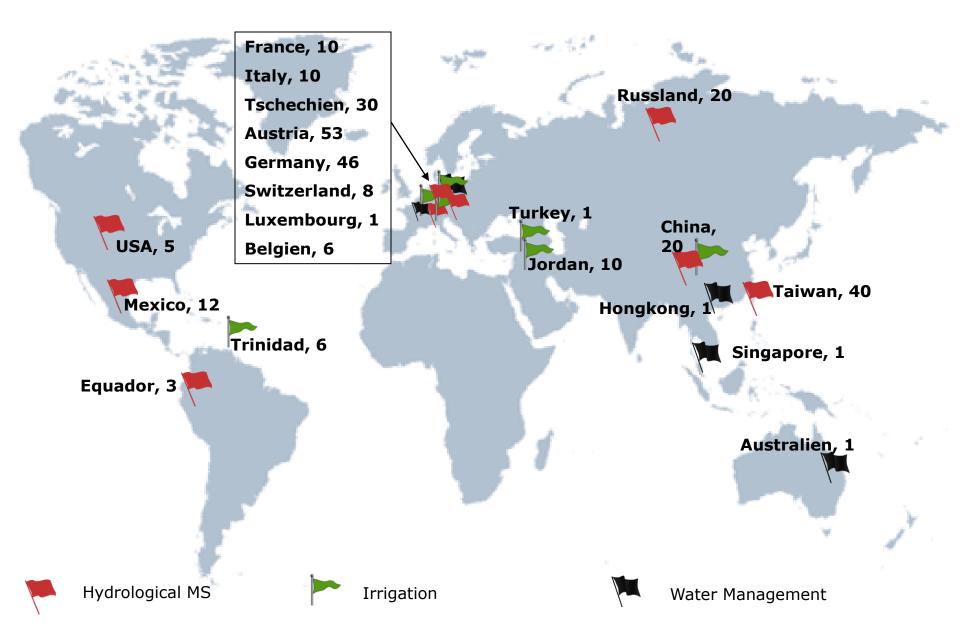
Check list

- \square Are there any waves at least 3 mm ?
- □ Is the hydraulic situation qualified for a RQ measurement site?

There should not be any ...

- □ Curves
- □ Bridges or piers which influences the river flow
- Backwater
- Dam
- □ What is the min./ max. water depths (e.g. 100 year flood)?
- □ What kind of power supply is needed?
- Is an installation at the bridge possible or is an extension arm needed?

Helpful documents for evaluation of a measuring site


- Several pictures of measurement site
 - Upstream
 - □ Downstream
 - □ Water surface whole river and detail
 - □ Bridge from the side, piers
- □ Map of the measurement site (e.g. Google map in good resolution)
- □ Estimated min. flow velocity/ max. flow velocity
- Profile / cross section of the measurement site

- RQ-30, General training data and information, 2011, V001, © Sommer GmbH & Co. KG, Exclusion: Subject to deliverability, technical changes and errors excepted.

- \square Confluence of rivers
- □ Boulders
- □ Underwater construction
- \square Other influences of river flow

> 300 Measuring sites worldwide

»Non-contact = failsafe = maintenance free (no damage, cleaning of sensor)

» Accurate measurement after installation especially in case of flood incl. floodplains

Continuous measurement of flow velocity

»No problems with suspended sediments in the water

Stage-discharge curve Q(h) not required

Detection of riverbed changing

»No limit of minimum water depth

» Easy and economic set-up outside the river

Thank you for your attention! **Questions?**

Loisach, Bavaria, Germany

Inn, Upper Austria, Austria

Some measurement sites in Austria and Germany.

For further information

» Contact: elscolab@elscolab.com

