

SCANTER

Surface Movement Radar

Surface Movement Radar

15 years of experience in the Surface Movement Radar market has made Terma a well-recognised product supplier. Being the supplier of radar systems for international airports in Europe, America and Asia heavy strain is put on Terma for keeping abreast with the latest technology and yet supplying thoroughly tested and reliable systems.

The SCANTER 21' antenna represents the latest antenna technology and in combination with the SCANTER transceivers make out the ultimate choice for SMR installations. For airport applications, circular polarised are recommended

The SCANTER 2001 Radar System provides a clean picture of on-ground movements given any weather conditions for Airport Surface Movement applications.

Terma A/S offers a cost-effective, high-performance X-band radar sensor for Surface Movement Radar (SMR) applications at airports, in accordance with customer requirements and ICAO recommendation.

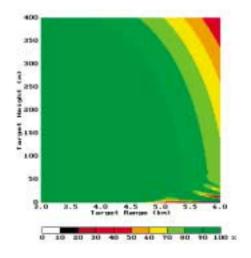
The aim is to obtain target detection and resolution as good as that achievable by the use of much more expensive Kuband technology. As an additional benefit, the SCANTER 2001 Radar System features better rain penetration.

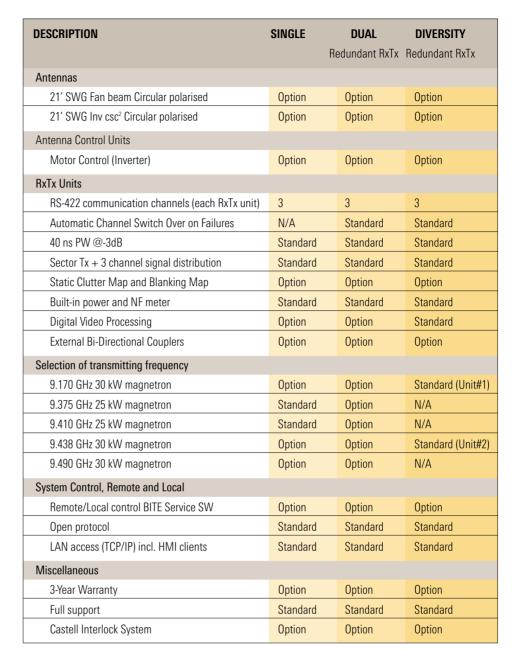
Safe and reliable operation is of the utmost importance; and each individual SCANTER product is designed bearing that in mind. Redundancy and fall-back modes are designed to keep single point failures simple and at the same time include full redundant parallel processing.

The transmitter, receiver, and signal processing technology is configured to ensure optimum performance of the SCANTER Radar Sensor Systems for continuous operation in all weather conditions.

Consequently, the system is characterised by high resolution, a wide receiver dynamic range, noise reduction facilities, built-in test equipment, and the ability to perform remote servicing activities.

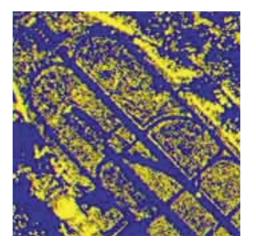
The SCANTER 2001 Transceiver product range supports 6 system configurations; ranging from a basic single Transceiver unit to a Dual Redundant Frequency Diversity configuration.

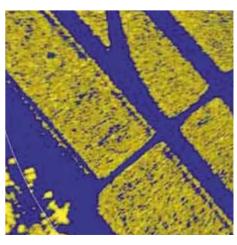

Antennas can be selected from a range of Terma slotted Waveguide antennas. For airport applications, circular polarised antennas are recommended.



The newly developed SCANTER 2001 transceiver, available in six configuratitions, entails so far unseen high-quality and sharp radar images, thus enhancing on-ground flight security

Terma SMR systems are developed and manufactured observing ICAO recommendations.
The performance chart represents a simulted requirement detection probability




Peripheral units such as maintenance displays and switch units are, to the extent possible, configured for use throughout the product line, independent of the actual configuration.

This table lists the features included in Terma's production line for airport surface movement radar applications.

Typical airport raw radar images showing overview of runway area

Close-up detail clearly showing runways, runway lights and an airplane

X-BAND ANTENNAS

Azimuth encoders	Digital azi	muth encoders
	21' CP-F	21' CP-I
Horizontal BW @-3dB	≤ 0.37°	≤ 0.37°
Vertical beam	11° fan	inv. Coseq ²
Gain	≥ 38 dB	≥ 37 dB
Rotation speed @ 50 Hz		
Standard, ±10%,	60 rpm	60 rpm
Wind speed (operational)	≤ 35 m/s	≤ 35 m/s
Dimensions		
Swing diameter	≤6600 mm	≤6600 mm
Weight	≤375 kg	≤375 kg
Drive motor		
Power	2.2 kW	2.2 kW

ENVIRONMENTAL SPECIFICATIONS

IEC-68-2	
EN 60945	
CSA, CE, VDE	

RECEIVER-TRANSMITTER

Transmitter		
Frequency		
Single or Dual configuration	on	
9.170, 9	.375, 9.410, 9.438 or 9.490 GHz	
Frequency Diversity configuration		
	Simultaneous transmission	
	on 9.170 and 9.438 GHz	
Magnetron	25 to 30 kW X-band	
Output Power	17 kW ±2 dB at output flange	
Pulse width	40 ns	

Programmable: 800 - 8.000 Hz.

±2%

0, 2, 4 or 8%

D.	^^	ivo	r


Accuracy

Stagger

PRF characteristics

PRF

Noise figure Overall	2.0 dB nominal (LNFE) 3.5 dB nominal, \leq 4.7 dB (0 - 55°C)
IF frequency Bandwidth	100 MHz 50 MHz
Image rejection	≥ 18 dB
Analogue video outpu Level Impedance Bandwidth	ts 4-6 V positive 75 Ω 30 MHz
Retimed video Retiming factor Digital video Analogue video Level Impedance	1, 2 or 4 8 bit parallel + clock + data enable 4-6 V positive 75 Q
Trigger outputs Level Timing Impedance	$8\pm1V$ positive Programmable 75Ω
Mains	115-242VAC, 47-63 Hz.
Sector transmission up Sector centre Sector width Resolution	p to 4 sectors 0-359° 10-350° 1°
Communication/Contr Protocol Interface Channels: LANInterface Phases	ol Remote Control and BITE/Service Serial RS-422A, 9.600 bit/sec 3 TCP/IP 3

The SCANTER 2001 Radar System concept features

Modular open-end system architecture

High system performance, including a low-noise, high dynamic range receive

Advanced signal processing

Easy operation due to Predefined settings (Profiles)

Remote contro

High reliability entailing low maintenance costs and long life

Built-in Test Equipment (BITE) including output power and Noise Figure (NF) measurement

Preparations for integration of future modules/functions

Terma A/S Hovmarken 4 DK - 8520 Lystrup Denmark T +45 8743 6000

F +45 8743 6000

terma.hq@terma.com www.terma.com/radar