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Statement: "The radar equation represents the 
physical relationships from the transmission 
power to the wave propagation, including the 
reflection and the way back to the reception. “ 

Question of a physicist: Why transmission 
power, the wave propagation is really an energy transport? 

Answer: Power is defined as energy per time unit. Assuming that the duration of the transmitted 
signal is not, or not significantly, different from the duration of the reflected and received signal, 
then the ratio of transmitted energy to received energy can be replaced by the ratio of the 
transmitted power to the received power as the unit of time is shortened mathematically. Power 
is easier to measure than energy in radar, which is why a power ratio is preferred.  

In this presentation, the radar equation for a surveillance radar and point-like targets is derived.  

In the following, we will first assume that 
electromagnetic waves can propagate under 
ideal conditions, i.e. without interference.  

We first consider what happens to the 
transmitting power when it is radiated into free 
space. Before we consider the directivity and 
antenna gain of a real antenna, let's assume 
that the transmitter radiates isotropically, i.e. 
evenly in each direction without preferring any 
of the directions. 

Thus, the transmitting power is distributed 
spherically around the transmitter. Since the 
electromagnetic waves propagate at 
approximately the speed of light, the spherical surface becomes larger and larger. The power 
density per unit area on this spherical surface results from the ratio of a small unit area to the total 
surface area of the sphere, multiplied by the transmitting power. 

Here, the transmit power is still undirected, hence the symbol Su. The expression in the 
denominator is the sphere surface, where R is the radius of the sphere - it is also at the same time 
the previous distance (called range in radar jargon) from the small area unit, which will later be 
replaced by the reflecting object. The index R1 is only the outward path for the time being. As 



usual for power densities, the unit of measurement is given by watts per square meter, which 
results from the transmit power divided by an area (here: the square of the distance). 

We assume that the transmit power is constant over the period under consideration. That is, the 
only variable left in this equation is distance. From this, we can deduce that the power density at 
the receiving location decreases with the square of the distance. This corresponds to the inverse-
square law known in physics.   

A second aspect of the free space loss is that 
this considered section from the sphere surface 
cannot be made arbitrarily small. A receiving 
antenna always has an effective area: the 
aperture. The smallest possible aperture of a 
receiving antenna depends on the transmitted 
wavelength: here width and height, i.e. λ². The 
maximum number of such squares on the 
spherical surface depends on their size 
concerning the spherical surface, i.e. λ² divided 
by 4π. (The radius here is still the unit circle 
with radius r=1). Thus, the free space loss 
becomes frequency-dependent!  

We have already seen the undirected power density Su as the transmitted power distributed on 
the surface of the sphere, and we use this expression here. 

We summarize the quantities to be squared.  

Up to this point, however, it is still a gain factor much smaller than 1 by which the transmit power 
is multiplied.  

The free space loss F is then the reciprocal of this gain, the ratio of transmit power to receive 
power. A free space loss is thus just a dimensionless number.  

Let's return to the power density. Now we use 
a radar antenna with strong directivity. 
Compared to an isotropic radiator, this antenna 
has an antenna gain G. The undirected power 
density now becomes the directed power 
density Sg. Thus, the directional power density, 
increased by the antenna gain, arrives at the 
reflection object.  

We have already learned about the undirected 
power density as the ratio of the transmitted 
power to the sphere surface and can replace 
this term here.  

  



Now it depends on how large the effective 
reflection area of this object is, i.e. how much 
of this power density is backscattered.  

This effective reflection area (also called Radar 
Cross Section, RCS) can assume very different 
values: several hundred square meters for a 
large container ship down to fractions of 
square centimeters for a plastic projectile from 
a small shotgun.  The spherical reflector is used 
as a reference, which in turn causes an 
isotropic, i.e. an equally strong reflection, 
regardless of the direction from which it is 
illuminated. The visible area should be 1 m² from all directions, so the diameter of the sphere 
must be about 1.3 m.  

The reflected power Pr is now dependent on 
the power density Sg existing at the location of 
reflection, and the size of the reflector, i.e. its 
radar cross section (sigma). 

The small partial area on the surface of the 
sphere considered so far is now given a 
variable size and multiplied by the power 
density at this location. Thus, the unit of 
measurement square meter is truncated again 
and a power variable is created: the reflected 
power Pr in watts.  

Simplified: the reflecting object can again be 
considered a radiator based on the reflected power. The reflected power then becomes the 
radiated power (from the reflector).   

On the return path of the echo signals, the 
same conditions prevail as on the outward 
path. Also, here the power density at the radar 
antenna Se is only a partial area of a sphere 
surface with the radius R2 (here: of the return 
path).  

We have derived in the previous slides, how 
large the reflected power is concerning the 
transmitted power, and we can insert this term 
here.   

  



The receiving antenna of the radar is located in 
the environment of this power density. This 
antenna also has an effective antenna area, 
which is formed by the geometric area A 
multiplied by a matching factor Ka containing 
the efficiency. Together with the power density 
Se applied at this location, this gives the 
received power of the antenna Pe.  

We replace the variable Se with the expression 
already derived.  

However, the effective antenna area is a rather 
unwieldy value here. This value also appears in 
another equation that arises when deriving the antenna gain of an antenna. If this equation is 
rearranged to A·Ka, we can substitute this term. As a result, the 4π now appears to the third 
power and the wavelength lambda appears in the equation. The antenna gain G is now raised to 
the square: this is also logical because this gain acts on both transmission and reception.  

For a monostatic radar using the same antennas for transmitting and receiving, the outward path 
R1 is equal to the return path R2 and can be further summarized as R⁴.   

We can rearrange this equation in the first step 
according to the distance. This creates the well-
known equation with a long fraction line under 
the fourth root.  

In a second step, we assume that the received 
power should be equal to the minimum 
possible received power. 

This gives us an equation that determines the 
theoretical maximum possible range of a radar. 

So far, however, we have assumed ideal 
conditions without internal or external 
additional losses, such as attenuation on feed 
lines, in the case of losses in the matching of the antenna, or the conversion of conducted waves 
to space waves, and during the propagation of the electromagnetic waves.   

  

  



These losses can all be summed up to a loss 
factor Ltot. Thus, the basic radar equation is 
completely derived. 

This equation is independent of the modulation 
type and thus universally applicable for every 
reconnaissance radar. However, different 
radars have different loss quantities. In some 
circumstances, these can even become gains, 
as in the case of a chirp radar using pulse 
compression, where the duration of the 
transmitted signal and the duration of the 
compressed echo signal are just not equal. 
Similarly, pulse integration, i.e., improving the signal-to-noise ratio over multiple pulse periods, 
can be used because the noise is rarely synchronous with the echo signal and therefore a sum of 
the voltages does not amplify the noise to the same degree as the echo signal. 

However, larger differences in the application of this equation arise in the case of a weather radar, 
where volume targets are located rather than point targets. In this case, the size of the effective 
reflection area σ is also dependent on the distance, which changes the structure of the entire 
equation. 

What can be done with this basic radar equation? Certain parameters can be influenced only a 
little or not at all by the user of a radar unit, they are given by the manufacturer. These would be 
for example the size of the antenna and thus the antenna gain and the used wavelength. Also, the 
transmit power and the receiver sensitivity can often only be influenced to a small extent. 
However, losses in the feed lines can be minimized by good maintenance.  

In contrast, the value of the radar cross section is very variable. It is the reason why targets with a 
very small radar cross section are very difficult to detect. The range of the radar is very limited 
here despite a good design concept and a good maintenance condition.  

From this basic radar equation, already 
essential properties of radar can be derived. If, 
for example, the wavelength of the radar is 
reduced, i.e. the transmission frequency is 
increased, then the range is reduced! Radar 
units with a large range in air defense therefore 
usually work with a lower transmission 
frequency. The ideal would be a radar in the 
VHF to UHF range because here the 
electromagnetic waves still propagate 
reasonably straight. 

But the geometrical size of the antenna is also 
hidden in the antenna gain: see again the 
equation with the antenna gain: For a desired (constant) antenna gain, the size of the antenna is 
proportional to the wavelength. That means: if the antenna gain is the same, the necessary 
geometrical extension of the antenna will also be larger with a larger wavelength! The picture 
shows a VHF/UHF radar with a parabolic reflector with a diameter of 46 m.  



A compromise between antenna size, range, 
and angular accuracy is the L-band, in which 
most long-range radars operate. This applies to 
both air defense and air traffic control: en-
route radars operate at frequencies between 
1.25 and 1.35 GHz. In the picture the air traffic 
control radar in the gray North has a parabolic 
reflector of 9 by 14 meters, so it is already 
much smaller than the previous example. 

However, a large wavelength also has a 
disadvantage. The possible accuracy of radar is 
also a function of the wavelength. Therefore, 
radars with higher accuracy requirements operate at higher frequencies, despite any limitations in 
range.  

It is obvious that a higher transmitting power 
also results in a higher range. However, this is 
not a linear relationship. The transmitting 
power is under the fourth root. For clarity, let's 
summarize the other variables as a constant 
factor.  
To double the range, the transmit power would 
have to be increased sixteenfold! 
A small increase or decrease of the transmit 
power has almost no measurable influence on 
the range of a radar. A 10% reduction in 
transmit power causes a range loss of about 
2.6% (the fourth root of 0.9 is 0.974). The 
picture shows power amplifier modules of the transmitter of an air traffic control radar. The power 
amplifier stage consists of up to 32 such modules. If one of these modules fails, a remaining range 
of 99.2% (the fourth root of 31/32) remains. This would not be noticeable on the radar display.  
But the technician sees that the red LEDs “module error” and “module off” light up and can change 
this module even during operation.   

Also, to screw at the sensitivity of the receiver 

does not bring substantially much. Something in 

the order of 16x would also have to be done 

here (that would be +12 dB). But the sensitivity 

of the receiver is strongly dependent on the 

noise level. If the received power does not 

exceed the noise level, then this echo signal will 

not be detected. One can integrate this 

relationship immediately into the radar equation 

(However, I call it no more radar basic equation 

now!).  

  



Here you must know, however, that an echo pulse does not lie before, behind, or between the noise, 

but that the voltage of the echo signal and the voltage of the noise pulses add up. The echo signal, 

therefore, “pushes” the noise upwards. In practice, however, this is only possible with well-tuned 

analog displays used by an experienced operator who can still detect many a faint target “under” the 

noise. Technical circuits, on the other hand, would not detect an echo signal until it is at least twice 

as large as the noise level.  

The basic idea is that the received power must 
be greater than the noise power at the receiver 
input. The limiting case is that it is equal. You 
can equate the PEmin with the noise power N 
(this variable name is derived from Noise).  
The reason for this noise is the thermal motion 
of all particles when exposed to heat. To the 
same extent, the electrons also resonate. This 
causes a basic noise in every cable, every 
resistor, and every semiconductor component. 
The higher the temperature, the higher the 
noise.  
At a temperature close to zero (-273°C), the 
noise is also close to zero. 
 

  
where: k the Boltzmann constant k= 1.38 x 10-23 J/K, 
 T the temperature in Kelvin and  
 BW the bandwidth of the receiver. 

  
Usually, the ambient temperature T0 = 290 K is chosen as the reference temperature. This 
corresponds to about 20° C.  (click)  
We replace the PEmin with the term kTBW ... 

The influence of the receiver bandwidth arises 
from the fact that the so-called white noise is 
extremely broadband. The narrower the 
bandwidth of the receiver, the less interfering 
noise it can receive. But the bandwidth of the 
receiver should be at least as large as the 
bandwidth of the transmitter to receive its 
echo signals without loss.  

This transmitter bandwidth depends on the 
transmission pulse duration for classical pulse 
radar. The variable τ (the Greek letter “Tau”) 
here is the duration of the transmit pulse.  

  



We replace the bandwidth with the transmit 
pulse duration (tau). 
The transmit pulse duration is usually placed 
right next to the transmit power. This better 
demonstrates that the range depends on the 
transmit energy - not ostensibly on the transmit 
power. This is also the reason why a continuous 
wave radar needs much less transmit power 
compared to a pulse radar to get passable 
ranges. 
And by the way, we have also confirmed the 
physicists' remark made at the beginning that 
wave propagation is an energy transport. 
Because transmitting power is energy per unit of time. If we multiply the transmission power with 
a time, the time unit is shortened from the power and the transmission energy remains. 
Nevertheless, we leave the term transmission power here, because electric power can be 
measured much better with known pulse duration, than energy.  
 

You can read this whole course of the 
derivation on the radar tutorial and print it out 
if necessary. 

This page can be found in the section Basics 
under the entry Radar Equation. 

 


